(1)氩气的性质
氩气是空气中除氮、氧之外,含量多的一种稀有气体,其体积分数约0.935%。氩气无色无味,在0℃和1atm(101325Pa)下,密度是1.78g/L,约为空气的1.25倍。氩气的沸点为-186℃,介于氧气(-183℃)和氮气(-196℃)的沸点之间。分馏液态空气制取氧气时,可同时制取氩气。
氩气是一种惰性气体,焊接时既不与金属起化学反应,也不溶解于液态金属中,因此可以避免焊缝中金属元素的烧损和由此带来的其他焊接缺陷,使焊接冶金反应变得简单并容易控制,为获得高质量的焊缝提供了有利条件。
Ar、He、H2、N2的热导率与温度的关系见图4。由此可见,氩气的热导率小,又属于单原子气体,高温时不会因分解而吸收热量,所以在氩气中燃烧的电弧热量损失较小。氩气的密度较大,在保护时不易漂浮散失,保护效果良好。焊丝金属很容易呈稳定的轴向射流过渡,飞溅极小。
(2)氩气的存储
氩气可在低于-184℃下以液态形式储存和运输,但焊接时多使用钢瓶装的氩气,氩气钢瓶规定漆成银灰色,上写绿
色(氩)字。目前我国常用氩气钢瓶的容积为33L、40L、44L,在20℃以下,满瓶装氩气压力为15MPa。氩气钢瓶在使用中严禁敲击、碰撞;瓶阀冻结时,不得用火烘烤;不得用电磁超重搬运机搬运氩气钢瓶;夏季要防日光暴晒;瓶内气体不能用尽;氩气钢瓶一般应直立放置。
(1)氦气的性质
氦气也是一种无色、无味的惰性气体,与氩气一样也不知其他元素组成化合物,不易溶于其他金属,是一种单原子气体,沸点为-269℃。氦气的电离电位较高,焊接时引弧困难。与氩气相比它的热导率较大,在相同的焊接电流和电弧强度下电压高,电弧温度高,因此母材输入热量大,焊接速度快,弧柱细而集中,焊缝有较大的熔透率。这是利用氦气进行电弧焊的主要优点,但电弧相对稳定性稍差于氩弧焊。
氦气的原子质量轻,密度小,要有效地保护焊接区域,其流量要比氩气大得多。由于价格昂贵,只在某些具有特殊要求的场合下应用,如核反应堆的冷却棒、大厚度的铝合金等关键零部件的焊接。
由于氦气电弧不稳定,阴极清理作用也不明显,钨极氦弧焊一般采用直流正接,即使对于铝、镁及其合金的焊接也不采用交流电源。氦弧发热量大且集中,电弧穿透力强,在电弧很短时,正接也有一定的去除氧化膜效果。直流正接氦弧焊接铝合金时,单道焊接厚度可达12mm,正反面焊可达20mm。与交流氩弧焊相比,熔深大、焊道窄、变形小、软化区小、金属不易过烧。对于热处理强化铝合金,其接头的常温及低温力学性能均优于交流氩弧焊。
(1)氧气的性质
氧气在常温常压下是一种无色、无臭、无味、无毒的气体。在0℃和1atm(101325Pa)下氧气密度为1.43kg/m3,比空气大。氧的液化温度为-182.96℃,液态氧呈浅蓝色。常温时,氧则以化合物和游离态大量存在于空气和水中。
氧气本身并不能燃烧,但它是一种化学性质极为活泼的助燃气体,能与很多元素化合,生成氧化物。通常情况下把激烈的氧化反应称为燃烧。气焊和切割正是利用可燃气体和氧燃烧所放出的热量作为热源的。
(2)氧气的制取
制取氧气的方法很多,如化学法、电解水法及液化空气法等。但在工业上大量制取氧气时,都采用液化空气法。就是将空气压缩,并且冷却到-196℃以下,使空气变成液体,然后再升高温度,当液体空气的温度上升到-196℃时,空气中的氮则蒸发变成气体,但温度继续升高到-183℃时,氧开始气化。再用压缩机将气体氧压缩到120~150atm,装入专用的氧气瓶中,以便使用和储存。
(3)氧气的存储
氧气的存储和运输一般都将氧气装在专用的氧气瓶中,并且氧气瓶外部应涂上天蓝色油漆,用黑色油漆写上“氧气”两字以作标志。氧气瓶应在使用过程中每隔3~5年应在充气工厂进行检验,即检查气瓶的容积、质量,查看气瓶的腐蚀和破裂程度